Uh(g) INVARIANT QUANTIZATION OF COADJOINT ORBITS AND VECTOR BUNDLES OVER THEM

نویسنده

  • JOSEPH DONIN
چکیده

Let M be a coadjoint semisimple orbit of a simple Lie group G. Let Uh(g) be a quantum group corresponding to G. We construct a universal family of Uh(g) invariant quantizations of the sheaf of functions on M and describe all such quantizations. We also describe all two parameter Uh(g) invariant quantizations on M , which can be considered as Uh(g) invariant quantizations of the Kirillov-Kostant-Souriau (KKS) Poisson bracket on M . We also consider how those quantizations relate to the natural polarizations of M with respect to the KKS bracket. Using polarizations, we quantize the sheaves of sections of vector bundles on M as oneand two-sided Uh(g) invariant modules over a quantized function sheaf.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization of Equivariant Vector Bundles

The quantization of vector bundles is defined. Examples are constructed for the well controlled case of equivariant vector bundles over compact coadjoint orbits. (Coadjoint orbits are symplectic spaces with a transitive, semisimple symmetry group.) In preparation for the main result, the quantization of coadjoint orbits is discussed in detail. This subject should not be confused with the quanti...

متن کامل

A Quantization Procedure of Fields Based on Geometric Langlands Correspondence

We expose a new procedure of quantization of fields, based on the Geometric Langlands Correspondence. Starting from fields in the target space, we first reduce them to the case of fields on one-complex-variable target space, at the same time increasing the possible symmetry group G. Use the sigma model and momentum maps, we reduce the problem to a problem of quantization of trivial vector bundl...

متن کامل

Dynamical Yang-Baxter equation and quantum vector bundles

We develop a categorical approach to the dynamical Yang-Baxter equation (DYBE) for arbitrary Hopf algebras. In particular, we introduce a notion of dynamical extension of a monoidal category, which provides a natural environment for quantum dynamical R-matrices. In this context, we define dynamical associative algebras and show that such algebras give a quantization of vector bundles on coadjoi...

متن کامل

ar X iv : h ep - t h / 93 12 12 3 v 2 7 J an 1 99 4 Affine Gelfand - Dickey brackets and holomorphic vector bundles

We define the (second) Adler-Gelfand-Dickey Poisson structure on differential operators over an elliptic curve and classify symplectic leaves of this structure. This problem turns out to be equivalent to classification of coadjoint orbits for double loop algebras, conjugacy classes in loop groups, and holomorphic vector bundles over the elliptic curve. We show that symplectic leaves have a fini...

متن کامل

Fuzzy Line Bundles, the Chern Character and Topological Charges over the Fuzzy Sphere

Using the theory of quantized equivariant vector bundles over compact coadjoint orbits we determine the Chern characters of all noncommutative line bundles over the fuzzy sphere with regard to its derivation based differential calculus. The associated Chern numbers (topological charges) arise to be non-integer, in the commutative limit the well known integer Chern numbers of the complex line bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008